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Abstract— This paper discusses an application of ISAAC design methodology to a balloon-borne payload 
electronic system for aurora observation. The methodology is composed of two phases, high level design and 
low level implementation, the focus of this paper is on the high level design. This paper puts the system 
architecture in the context of a balloon based application but it can be generalized to any airborne/space-borne 
application. The system architecture includes a front-end detector, its corresponding data processing unit, and a 
controller. VisualSim has been used to perform modeling and simulations to explore the entire design space, 
finding optimal solutions that meet system requirements. 
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1. INTRODUCTION 

The objective of the modeling methodology is to conduct trade space studies to evaluate the performance and 
effectiveness of system architectures. A good model has characteristics of a high level block diagram with 
functionality that incorporates low level requirements. The model discussed in this paper is for a ballooning 
mission as described by [1]. There are three high level blocks in the model which includes the detector, 
processing unit (Ebox), and a controller as shown in Figure 1. For this paper the instrument being modeled will 
be one of JPL’s developed near infrared (NIR) cameras. The Ebox includes an FPGA-based data processing 
platform (iBoard) developed by JPL and a storage element. Balloons from the National Scientific Ballooning 
Facility (NSBF) have their own separate computing element that acts as the master controller thus is being 
modeled as an external controller. 
 

 
Figure 1: High Level System Design 

 
This paper will go through the methodology of creating the model and some of the results that can be drawn 
from it. The structure of the paper is as follows, Section 2 will discuss an innovative technology that the 
ballooning mission incorporates which the model is a subset of; Section 3 will provide a background about one 
such ballooning mission that uses the NIR camera to put things into context; Section 4 will formulate the 
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problem, present assumptions and simplifications made by the model and discuss operational scenarios; Section 
5 will give detail about the model; Section 6 will present results from the model and finally Section 7 will 
discuss about future extensions. 

2.  ISAAC DESIGN METHODOLOGY  
ISAAC (Instrument Shared Artifact for Computing) is a JPL three year research and development task. Its main 
purpose is to provide designers a work flow that takes the users’ high-level block diagrams and implement them 
into hardware. ISAAC technology targets a variety of instruments including radar, radiometer, and imager. It 
hopes to cut design time and cost by introducing a reusable FPGA data platform that has prebuilt cores which 
the designer can use.  

 
Figure 2: ISAAC concept diagram 

 
Figure 2 shows the concept flow starting from the top flowing to the bottom. To begin, the user will use iTool 
which is an integrated tool-chain that will aid in taking high-level designs to be implemented in hardware. 
iBench contains a suite of historical data streams from a variety of instruments. Data streams may be used 
through a common test bench architecture that tests and validates the ISAAC platform. iCore contains a set of 
standard IP cores which the designer may select from. The designer does not need to spend time developing 
these cores since it’s been provided. iPackage provides a front end interface to the user which allows for 
instrument control and computing solution. iBus handles all the data flowing to and from ISAAC’s FPGA 
platform to iPackage. iBus creates a standard protocol for the various instrument data transmissions. Finally, 
iBoard is the FPGA platform that features a high-performance Virtex 5 FPGA. 
 
The ISAAC methodology is composed of two phases, high level modeling and simulation and low level 
implementation. This paper will focus on the high level models and simulations, exploring possible design 
spaces to determine optimal solutions for the system design. 
 

3. NOTATIONAL MISSION OVERVIEW 
Auroral observations are limited to places near the magnetic poles. In addition, it is desirable to be in a place 
that is not near any locations that may disrupt observations; this limits the locations to Antarctica. The NSBF 
restricts the window of opportunity of a balloon observation in Antarctica from December 1st to completion of 
the mission by February 1st. Based on the MAXIS balloon mission in 2000, the mission is expected to have a 15 
day flight duration cruising at 35-50 km above ground. 
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Figure 3: Balloon Flight Path [2] 

The red squiggly line in Figure 3 shows the flight path taken by MAXIS in 2000 over Antarctica [6]. The red dot 
in the middle of the figure represents the geographical pole and the red dot in the lower right quadrant represents 
the magnetic pole. The red oval around the magnetic pole represents the auroral ring and the black circles are 
points at which the balloon is able to do observations as represented by the white circles. The balloon is 
expected to continuously change orientation while on its flight path. As a result, the cameras may possibly 
observe dayside aurora, night side aurora, aurora at lower or higher than the auroral ring. 

The gondola on balloons provided by NSBF has separate control unit and power supply. The payload will reside 
in the Standard Instrumentation Package (SIP) which has been provided by the balloon. In the SIP, the payload 
will be able to communicate with the rest of the gondola. Because the processor unit and power supply from the 
gondola is being isolated from the SIP, the payload will need to supply them. 

 
Figure 4: Top level diagram 

Figure 4 shows the top level diagram of the system. The mission payload will reside in the science portion of the 
gondola. The science payload includes the NIR camera, the FPGA based reconfigureable on-board data 
processing platform iBoard, and stroage. Its mission is to capture data on daytime aurora so the scientists can 
analyse the results. The model will need to simulate the capturing of data by the NIR camera, processing and 
storaging functionality of the Ebox, and downlinking from the gondola. 
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4. ASSUMPTIONS / PROBLEM FORMULATION 
4.1 Assumptions 

The preliminary model presented in this paper assumes and simplifies the following:  
1. A single NIR camera is used to capture data and left on for the whole duration of the mission. 
2. One frame is captured per second 
3. Image size is 625 KB 
4. 6 hours of the mission is simulated 
5. Aurora data fall into one of three categories 

o Not visible – frames with no aurora activity, Threshold = 1 
o Barely visible – frames with very faint aurora, Threshold = 2 
o Highly visible – frames with very obvious aurora, Threshold = 3 

6. Aurora data categories are generated uniformly 
7. BitMicro’s E-Disk Altima Ultra320 SCSI Flash SSD specifications were used for the storage device 
8. Batteries are not rechargeable 
9. Data reduction is set to threshold detector, no data compression (raw images are stored) 
10. Payload receives information about downlinking opportunities from the balloon’s gondola 

o LOS <1% of the time, has data rate of 1 Mbps 
o TDRSS available 24/7, has data rate of 92 Kbps 

11. Downlinking is always done when available 
12. Data are downlinking in a FIFO basis 
13. Ebox only handles processing of data and storage 
14. Balloon gondola will send messages to the Ebox requesting data to be downlinked. 
15. Model is only concerned with the payload side 

 
As a reference, this model will use one camera that will continuously record data at one frame per second. The 
image size and downlink rates were provided by [2]. A threshold detector for aurora observations has been 
developed and shown to work; the model will use this method as a baseline algorithm (refer to [7] for details 
about method). A single simulated second maps to a single second in real time. There are 1296000 seconds in 
15 days thus 1296000 frames are produced. This amount of frames is too large for the simulator to handle so 6 
simulated hours or 21600 frames will be used (6 simulated hours is near the maximum data points the simulator 
can process).  
 
4.2 Operational Scenario 

Three major design spaces are being considered in this paper; they are storage capacity, power, and downlink. 
These three design spaces produce a large amount of operational scenarios. We will only consider a subset of 
these scenarios and consider all else a hybrid of them. The operational scenarios are as follows: 
 

1. Store all data on-board during the entire mission without downlink it 
2. All data are downlinked real time; 
3. Data are process and stored first and only real-time data needs to be downlinked real time 
 

The first scenario is the extreme case where all the data will be stored on board. The second scenario is the 
opposite end of extremity where all the data is being downlinked. The third scenario is a hybrid of the first two 
and involves both storing and downlinking data in parallel; this will produce redundant data. The reasoning for 
considering these extreme cases is to gather information about them and know that any other scenarios will 
perform better than these. 
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The model will simulate the three operational scenario mentioned above based on the assumptions and 
simplifications mentioned earlier. The current model simulates the three scenarios and gets estimates on the 
storage capacity requirements as well as power usage. 
 

4.3 Problem Formulation 

The system consists of three blocks, instrument, Ebox, and external controller. The problem is how the system 
architecture should be designed such that all requirements will be satisfied. This section will describe three 
problems. Problem 1 describes a data reduction and compression architecture, Problem 2 describes the issues 
with power and operational states, and Problem 3 describes the issue with downlinking and the required storage 
capacity. 
 
4.3.1 Data Reduction / Compression 

The system consists of three blocks, instrument, Ebox, and external controller. The problem is how the system 
architecture should be designed such that all requirements will be satisfied. The first step in this approach is to 
determine the method of data processing. Before discussing this issue, let’s define the difference between data 
reduction and data compression. 

1. Data Reduction is the removal of information that is not recoverable. 
2. Data Compression compacts the data into a smaller volume and is recoverable to some extent (there are 

compression algorithms that are lossy in which case, some bits are thrown away). 
 

To put things into context with the aurora observation mission, video captured by the NIR camera does not 
always contain auroral activities. These “non-interesting” frames consume storage space and possibly 
processing power. In addition, the mission captures data on the order of terabytes (TB) which exceeds the 
maximum capacity of single storage devices. 
 

 

 
Figure 5 shows a possible data flow from processing raw data to a more manageable size. The first exploration 
that needs to be done is deciding whether to perform data reduction or data compression first. The order in this 
case matters because in the case where data reduction is performed first, fewer images will be compressed thus 
perhaps less processing time. However it may be the opposite case where perhaps compression should be 
performed first because the data reduction algorithm works better with fewer bits. 
 
In addition to deciding whether data reduction or data compression should be done first, choosing the data 
reduction algorithm and data compression standard is also critical. There are several data reduction algorithm 
that may be considered like a threshold detector that throws away images that do not pass the threshold or an 
algorithm that learns the patterns an aurora and captures only those images. For data compression, there are 
quite a number of standards to choose from which needs to be determined. 

Figure 5: Data Flow 
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4.3.2 Power and Operational States 

Another problem to consider will be power management and operational modes. Different operational modes 
will draw different amounts of power. Choosing when to turn things on or off and what each operational mode 
will do is important. 
 

Table 1: Power States 

 

Figure 6: Power State Flow Diagram 

Table 1 shows all the possible power states the payload can go through during the mission. The possible states 
are: Initialization, Calibration, Standby, Active, and Safe. Figure 6 shows a pictorial representation of the flow 
of states. The initialization state is called upon during the first few minutes of the mission. It wakes up the 
iBoard and storage device (Ebox) to perform engineering telemetry. In the initialization state, the sub-state, 
calibration is invoked which turn on the cameras to configure them properly.  After initialization, the system 
will go into standby state in which both the cameras and Ebox are put into standby and is ready to capture data. 
The active state is the primary state of the system. In this state, the cameras and Ebox are capturing, processing 
and storing data. In the active state, the system has the option to go back into the standby state to conserve 
power. At any point after the initialization state, the system may determine that power levels are not enough to 
sustain operability and will go into the safe state. In the safe state, the payload is turned off, when power reach 
operational levels, the power states will reset and will be placed back into the initialization state. 
 
4.3.3 Downlink and Storage 

There are two choices of downlinking data for this mission. The line of sight (LOS) is the fastest but is only 
available for less than 1% of mission duration. The Tracking and Data Relay Satellite (TDRSS) is very slow but 
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is always available. If the system does incorporate downlinking, when and how should it downlink? 
Downlinking will alleviate some of the load from the storage device but is not a significant amount compared to 
data volume captured. This model will focus on determining if downlinking will have an effect on the on-board 
storage device and determine the capacity needed. 
 

5. VISUALSIM MODEL 
VisualSim is a commercial modeling tool used to evaluate a system design [5]. The user is capable of designing 
complex systems and performing analysis and validation based on the concept specification. Its goal is to reduce 
the time in developing systems and aids the system engineer to extract low level implementation requirements 
from high level system architecture. This is done by using VisualSim’s hierarchy block that enables specifying 
low level requirement without losing the big picture. VisualSim is the modeling tool that this project uses.  
 
The approach for designing these models derive from the first two phases of the ISAAC methodology. Phase 
one starts with Figure 4. It shows the top level design that we would like to implement. Based on the 
assumptions and operational scenarios stated earlier, we can implement the design using VisualSim. 
 
5.1 Top Level Balloon-based Model 

 
Figure 7: High Level Diagram 

 
Figure 7 shows the VisualSim implementation of the top level system in Figure 4. The system can be broken 
down into two separate entities, the payload and gondola. Commands from the gondola are issued to the Ebox 
giving it information on when it is safe to turn on or off and requests data for downlinking when it becomes 
available. The Ebox will manage the payload’s power and operational states and decides when to downlink. 
Components that make up the payload are the NIR camera, iBoard, storage device and the battery. The balloon 
gondola is assumed to have telecommunication equipment used for downlinking and a command and data 
handling (CDH) unit. 
 
The payload’s top level block diagram can be seen in the blue box. Data is generated by the NIR camera and 
processed in iBoard, the FPGA based data processing platform. From iBoard, data is sent to storage (SSD) or to 
the balloon’s gondola for downlinking. The power generation and distribution (PGD) block holds the battery 
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and monitors the usage. 
 
The gondola consists of the downlinking unit and CDH. The downlinking unit detects when and which type of 
downlink is available and for how long. It is also responsible for receiving uplinked data and transmitting 
downlinked data. The CDH receives telemetry from its telecommunication unit and passes it on to the payload. 
It also notifies the payload when downlinking is available and if there were any uplinked messages. 
Since simulating 15 days with one second resolution (1296000 points for one camera) is too much to handle 
with VisualSim, the total time spans 6 simulated hours (21600 points). The three mission scenarios are captured 
by toggling the parameters Storage_available, realtime_downlink, LOS_available, TDRSS_available, 
LOS_mintime, and LOS_maxtime. Table 2 lists these parameters and provides a description of how it is being 
used. 
 

Table 2: Operational Scenario Description 

Storage Available 
Real-time 
Downlink 

LOS Available TDRSS Available Description 

FALSE FALSE X X Does nothing 
     

FALSE TRUE FALSE FALSE Does nothing 
FALSE TRUE FALSE TRUE All data are real-time downlinked via. TDRSS 
FALSE TRUE TRUE FALSE All data are real-time downlinked via. LOS 

FALSE TRUE TRUE TRUE 
All data are downlinked real-time with both 
TDRSS & LOS downlink, but not at the same 
time 

     
TRUE FALSE FALSE FALSE Data is stored 

TRUE FALSE FALSE TRUE 
All data are stored first then downlinked via. 
TDRSS 

TRUE FALSE TRUE FALSE 
All data are stored first then downlinked via. 
LOS 

TRUE FALSE TRUE TRUE 
All data are stored first then downlinked via. 
TDRSS & LOS but not at the same time 

     
TRUE TRUE FALSE FALSE All data are stored 

TRUE TRUE FALSE TRUE 
Data are stored and downlinked via TDRSS in 
parallel 

TRUE TRUE TRUE FALSE 
Data are stored and downlinked via LOS in 
parallel 

TRUE TRUE TRUE TRUE 
Data are stored and downlinked via TDRSS & 
LOS, but not at the same time, in parallel 

 
For notational purposes in the results section, the settings in blue will be Configuration 1, red will be 
Configuration 2, green will be Configuration 3, purple will be Configuration 4 and peach will be configuration 
5. The configurations with both Storage_available and realtime_downlink set to true is not displayed in the 
results section because it yields the same results as Configuration 1 and 2 (buffer_size) and Configuration 3 
(storage_size). The rest of the unassigned configurations have not been implemented into this preliminary 
system design. 
 
5.2 Low Level System Models 
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Figure 8: a) NIR camera b) iBoard c) SSD d) PGD 
 
Figure 8 shows the low level detail implementation of the payload. Figure 8a shows the internal blocks of the 
NIR camera, 7b shows the internal block of iBoard, 7c shows the internal block of the storage and 7d shows the 
intern block for PGD. Figure 8 reside inside of VisualSim’s hierarchy model denoted by the green blocks with 
an arrow and an ‘H’ as shown in Figure 7. This is a nice feature of VisualSim because the high level block 
diagram can be kept while still having functionality in the lower levels. 
 
5.2.1 NIR Camera 

Figure 8a consists of a traffic generator (yellow), a mapper (blue), and a processing block (red). Together it 
simulates the NIR camera. Data is being produced by the traffic generator every second based on the assumption 
that the camera takes images once every second. The traffic generator generates data in a data structure format 
which contains information such as time and ID. The following is an example of the contents of the data 
structure that VisualSim creates.  
 

DISPLAY AT TIME    ------ 54.34882608700 sec ------ 
{BLOCK   = "Aurora_Gen",  
DELTA   = 0.0,  
DS_NAME   = "<path>.Aurora_DS",  
ID    = 1,  
INDEX   = 0,  
TIME    = 1.0E-10,  
Type    = 2} 

 
 The data structure was extended to include information on the type of image. Data flows through the mapper 
which is needed for simulations purposes. It allows different hierarchical blocks to run simultaneously instead of 
sequentially i.e. parallel processing. Mappers do not have any delay thus the data comes right out to the 

a) b) 

c) d) 
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processing block. Here, the data is classified into one of three categories: not, barely, and highly visible.  The 
processing block generates these three categories uniformly; this assumption was made to simplify the problem. 
It assigns ‘not visible’ to 1, ‘barely visible’ to 2, and ‘highly visible’ to 3 in Type of the data structure. 
Parameters of this hierarchical block are image_size and FPS. image_size is set to the provided information of 
625 KB and FPS (frames per second) is set by assumption. 
 
5.2.2 iBoard 

Figure 8b models the iBoard FPGA based data processing platform. It consists of a mapper (blue), several 
processing blocks (red), and a CustomC block (light blue). After the data is categorized into one of the three 
types of frames, it is sent to the iBoard for processing. Once again, data first flows through the mapper which 
allows the data to be processed simultaneously as the camera block is producing data. Immediately after, the 
data is parsed into three points of interest, TIME, ID, and Type. TIME provides information on when the data 
generated and ID is the data’s unique number. Type describes which category the data falls under (not visible, 
barely visible, or highly visible). For simplicity, the processing algorithm is a threshold detector. The three key 
information are passed along with the threshold value to the CustomC block. Inside the CustomC block is a C 
program that compares the threshold value to the Type. If the Type is larger than or equal to the threshold value, 
then the data is passed otherwise the data is thrown away. Data coming out of the CustomC block flows through 
the last processing block which determines where to route the data. The possible options are to route directly to 
storage only, balloon gondola only, or both storage and gondola. Parameters in this hierarchy block consist of 
Threshold and Processing_delay. The Threshold value is a number between 1 and 3 which represents the three 
different types of images. Processing_delay is a parameter that describes how long in seconds the processor 
takes to perform an algorithm. 
 
5.2.3 Storage 

Figure 8c shows the model for the storage device. It is assumed that the mission will be using a solid state 
device (SSD).This hierarchical block contains several mappers (blue), processing blocks (red), and a Smart 
Resource Block (blue with queuing diagram). Data from the iBoard goes through the mapper then through a 
memory usage counter that increment each time when data passes through. The data is then sent to the Smart 
Resource Block where it is being stored. The Smart Resource Block is configured as a very large FIFO (first-in, 
first-out) queue. Most of the time, the data will sit idle in this block, when iBoard determines it wants to 
downlink data,  iBoard will send a message through ‘pop’ which takes the oldest data and sends it to the 
gondola. When that happens, the memory usage counter is decremented. The parameters in this block are 
access_time and storage_size. The time it takes to read and write data is characterized by the access_time 
parameter while the storage size is characterized by storage_size. The storage_size is a function of image_size 
because it is useful to know the amount of frames that can be stored. 
 
5.2.4 Power Manager 

Finally Figure 8d shows the model for the PGD unit. This unit consists of only the Power Manager (red). The 
Power Manager has a table of all the mappers being used and their power usage. Whenever a mapper is called 
on, the Power Manager will do a table look up for its corresponding power usage and adjust the current power 
level respectively. This mission assumes that the batteries cannot be recharged thus the Power Manager will 
only be decrementing. The parameters of this block are cam_active, cam_standby, iBoard_active, 
iBoard_standby, ssd_write, ssd_read, and ssd_standby. There parameters are inputted into the Power Manger’s 
table. 
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Figure 9: a) Downlink unit b) CDH unit 

 
Similar to Figure 8, Figure 9 are hierarchy blocks that reside in Figure 7 under the balloon’s gondola. Figure 9a 
shows the downlinking unit and Figure 9b shows the CDH unit. Both of these units are part of the gondola and 
modeled as an external controller to the payload. 
 
5.2.5 Downlink Unit 

Figure 9a shows the model for the balloon’s gondola downlink unit. It consists of single event generator (white), 
processing blocks (red) and delay (gray). A flag is generated at a random time by the single event generator 
however for simplicity, both the single event generator will generate a flag at the start of the simulation. This 
flag will represent the telecommunications detecting available downlink. The flag goes through the processing 
blocks which calculates the duration of the downlink and passes that information to the CDH unit. When iBoard 
decides to downlink, data will be pulled from the storage and passed to this module for downlinking. The 
parameters of this block are LOS_delay, LOS_rate, TDRSS_delay, and TDRSS_rate. LOS_rate is a given 
parameter and LOS_delay is calculated using LOS_rate. Similarly TDRSS_rate is given and TDRSS_delay is 
calculated using TDRSS_rate. These parameters model the time it takes to downlink a single frame. 
 
5.2.6 CDH Unit 

The CDH unit on the gondola is the main processing unit. It is responsible for keeping the balloon alive and 
functional. CDH will provide information about the balloon’s location, power status, and downlink 
availabilities. The model assumes that the payload has no control over CDH. This model consists of several 
processing blocks (red) and a Smart Resource Block (blue with queuing diagram). A flag from the downlink 
unit will be sent to CDH notifying that a downlink option is available. CDH will relay this message to iBoard 
and waits for iBoard’s decision. If downlink is taken, CDH will pull data from the storage and puts it into the 
Smart Resource Block buffer. Based on which high level parameters are toggled, the CDH block will determine 
which downlink will be used and routes the paths accordingly. CDH determines how much data can be 
downlinked by using the information generated by the downlink unit. It applies flow control and buffers as 
much data that can be transmitted in the window of opportunity. The only parameter in this model is the 
buffer_size which is a function of image_size to determine how many frames are being sent. 
 

6. RESULTS 
The current model explores the storage size usage for each of the three scenarios. These results are for simulated 
6 hour mission time during active state. The reason for this is because 6 simulated hours is how much the 
simulator can process. In addition, the active state shown in Figure 6 is the state which the system will be in 
most of the time so the simulator will model a typical operation. Both downlinks are available from the start of 

a) b) 
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the simulation and are always taken. The image size is taken to be 625KB and a frame is captured every 
simulated second. The purpose of this experiment is to determine the required storage size under the 
configurations shown on Table 2 and with varying threshold. 
 
In the first case where only downlink is available, the payload storage size is ‘X’ because it does not matter what 
the size is. The buffer size on the gondola is given by the number of frames rejected plus one multiplied with the 
image size. These numbers are determined by setting buffer_size to equal image_size and viewing the number of 
rejected data. The number of rejected data will tell us how many frames need to be stored plus one. The same 
technique was used in determining the storage size. In the cases where Storage_available is true and 
realtime_downlink is false, buffer_size is set to image_size because the downlinked data are requested one at a 
time and so the gondola requires a buffer size of at least one frame. In cases where both Storage_available and 
realtime_downlink is true, the storage_size and buffer_size are exactly the same as when one is true and the 
other is false. This is because when realtime_downlink is true, data flows in parallel to both the storage and 
CDH and the payload storage and gondola’s buffer are independent. 
 

Table 3: Threshold = 1 

Storage Available 
Real-time 
Downlink 

LOS Available TDRSS Available Description 

FALSE TRUE FALSE TRUE All data are real-time downlinked via. TDRSS 

Storage Size Buffer Size     

X 390    

Storage Available 
Real-time 
Downlink 

LOS Available TDRSS Available Description 

FALSE TRUE TRUE FALSE All data are real-time downlinked via. LOS 

Storage Size Buffer Size    

X 2880    

Storage Available 
Real-time 
Downlink 

LOS Available TDRSS Available Description 

TRUE FALSE FALSE FALSE All data are stored 

Storage Size Buffer Size     

21599 625 KB    

Storage Available 
Real-time 
Downlink 

LOS Available TDRSS Available Description 

TRUE FALSE FALSE TRUE All data are stored first then downlinked via. TDRSS 

Storage Size Buffer Size     

21202 625 KB    

Storage Available 
Real-time 
Downlink 

LOS Available TDRSS Available Description 

TRUE FALSE TRUE FALSE All data are stored first then downlinked via. LOS 

Storage Size Buffer Size     

17999 625 KB    

 
Table 3 shows the case where none of the frames were rejected thus will be considered the baseline. Based on 
the first two results, we can see that LOS downlink will transfer more data than TDRSS. We can also conclude 
that if downlinking data in real-time were chosen, we would need a buffer size of at least 1.8 GB per 6 hours. 
The latter three results are when data is stored first and waits to be downlinked. In the worst case where no 
downlink is available, the storage size required to hold all the data is 13.5 GB per 6 hours. The best case among 
the latter three configurations is when data is being stored and LOS downlink is being used. This configuration 
requires a storage capacity of ~11.4 GB per 6 hours which means LOS downlink offloaded 2 GB of data per 6 
hours. 
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Table 4: Threshold = 2 

Storage Available Real-time Downlink LOS Available TDRSS Available AVG # of Rejected SD 

FALSE TRUE FALSE TRUE   

   Storage Size X  

   Buffer Size  385.5 0.55 

Storage Available Real-time Downlink LOS Available TDRSS Available   

FALSE TRUE TRUE FALSE   

   Storage Size X  

   Buffer Size  2512.6 9.69 

Storage Available Real-time Downlink LOS Available TDRSS Available   

TRUE FALSE FALSE FALSE   

   Storage Size 14449.5 62.12 

   Buffer Size  1  

Storage Available Real-time Downlink LOS Available TDRSS Available   

TRUE FALSE FALSE TRUE   

   Storage Size 13922 70.29 

   Buffer Size  1  

Storage Available Real-time Downlink LOS Available TDRSS Available   

TRUE FALSE TRUE FALSE   

   Storage Size 10786.5 75.15 

   Buffer Size  1  

 
Table 4 is the case where frames with no event are not stored. Each configuration was ran seven times and 
averaged; the standard deviation was also calculated. Similar to Table 3, when downlinking real-time data, LOS 
can downlink more data but requires a larger buffer size. Comparing this configuration with Table 3’s, the 
buffer size is ~1.6 GB per 6 hours which is ~0.2 GB less. In terms of storage, the worst case requires ~9 GB per 
6 hours, ~4 GB per 6 hours less than in Table 3. The best case where LOS downlink is being used to offload 
storage requires a storage capacity of ~6.7 GB per 6 hours, nearly half the capacity required in Table 3. 
 

Table 5: Threshold = 3 

Storage Available Real-time Downlink LOS Available TDRSS Available AVG # of Rejected SD 

FALSE TRUE FALSE TRUE   

   Storage Size X  

   Buffer Size  374.71 .76 

Storage Available Real-time Downlink LOS Available TDRSS Available   

FALSE TRUE TRUE FALSE   

   Storage Size X  

   Buffer Size  1499 7.07 

Storage Available Real-time Downlink LOS Available TDRSS Available   

TRUE FALSE FALSE FALSE   

   Storage Size 7189.29 101.82 

   Buffer Size  1  

Storage Available Real-time Downlink LOS Available TDRSS Available   

TRUE FALSE FALSE TRUE   

   Storage Size 6786 29.72 

   Buffer Size  1  
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Storage Available Real-time Downlink LOS Available TDRSS Available   

TRUE FALSE TRUE FALSE   

   Storage Size 4074.57 47.44 

   Buffer Size  1  

 
Table 5 is the case where frames with highly visible aurora are stored and the rest are rejected. Similar to Table 
4, each configuration was tested seven times and averaged with standard deviation calculated. When 
downlinking real-time data, LOS transferred the most, requiring ~0.9 GB per 6 hours of buffer capacity. This 
was approximately half the capacity required in Table 3. The worst case for storage required ~4.5 GB per 6 
hours, approximate 1/3 of Table 3. The best case for storage requires ~2.5 GB per 6 hours which is 
approximately 1/4 of Table 3. 
 

Table 6: Storage and Buffer Size Summary 

Storage Available Real-time Downlink LOS Available TDRSS Available Description – Configuration 1 

FALSE TRUE FALSE TRUE All data are real-time downlinked via. TDRSS 

Image Type Storage Size (KB) Buffer Size (KB)   

1 0 243750   

2 0 241607.1429   

3 0 234821.4286   

Storage Available Real-time Downlink LOS Available TDRSS Available Description – Configuration 2 

FALSE TRUE TRUE FALSE All data are real-time downlinked via. LOS 

Image Type Storage Size (KB) Buffer Size (KB)   

1 0 1800000   

2 0 1572678.571   

3 0 937500   

Storage Available Real-time Downlink LOS Available TDRSS Available Description – Configuration 3 

TRUE FALSE FALSE FALSE All data are stored 

Image Type Storage Size (KB) Buffer Size (KB)   

1 13499375 625   

2 9022321.429 625   

3 4493928.571 625   

Storage Available Real-time Downlink LOS Available TDRSS Available Description – Configuration 4 

TRUE FALSE FALSE TRUE All data are stored first then downlinked via. TDRSS 

Image Type Storage Size (KB) Buffer Size (KB)   

1 13251250 625   

2 8738125 625   

3 4241875 625   

Storage Available Real-time Downlink LOS Available TDRSS Available Description – Configuration 5 

TRUE FALSE TRUE FALSE All data are stored first then downlinked via. LOS 

Image Type Storage Size (KB) Buffer Size (KB)   

1 11250000 625   

2 6750803.571 625   

3 2547232.143 625   
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Figure 10: Graph comparing threshold for a) Configuration 1 b) Configuration 2 c) Configuration 3 d) Configuration 4 e) 
Configuration 5 

Table 6 compares the results with respect to each configuration. In Table 3, the two worst case scenarios 
Configurations 1 and 2 (strictly downlinking) and Configuration 3 (strictly storing), the required storage size 
was ~13.5 GB and buffer size was ~1.8 GB. Looking at Configurations 4 and 5 in Table 3 (data is stored first 
then downlinked), we see that there was a slight improvement in storage capacity but as the threshold becomes 
higher, the improvement increases. Keeping in mind that this is for 6 hours, a 15 day mission will require ~810 
GB of storage capacity and ~108 GB of downlink buffer. To make matters worse, this model only has one 
camera; the mission will require four cameras with larger frame size. We can see based on the results that 
downlinking data in real-time will require a relatively large buffer while downlinking from the storage unit can 
offload some of the storage requirements in the Ebox.  
 
These results implement the threshold detector data reduction architecture with no compression. Seeing that the 
data is not being reduced sufficiently, Problem 1 will need to be investigated further. The assumption for made 
for the camera was to let it be continuously on. Modifying Problem 2 such that cameras can be turned off and on 
during the operational state may reduce some of the data volume. Finally Tables 3 through 6 directly relate to 
Problem 3. From these tables we were able to see the effects of downlinking and get a better understanding what 
the storage requirements are. 
 

7. FUTURE WORK 
This paper has explored the first part of the ISAAC methodology of high level design simulation. Through 
modeling and simulations, we can conclude that downlinking data from the storage device may prove useful in 
reducing the storage capacity required. Downlinking real-time data however does not improve the storage 
capacity and will require a large buffer size. After determining the final system design the next step is to 
continue with ISAAC methodology. The high level designs will be mapped into the low level FPGA 
implementation. 

a) b) 

c) d) 

e) 
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